Differentiation of Human Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons in Mouse Hippocampal Slice Cultures

نویسندگان

  • Toshimitsu Hiragi
  • Megumi Andoh
  • Toshihiro Araki
  • Takayuki Shirakawa
  • Takashi Ono
  • Ryuta Koyama
  • Yuji Ikegaya
چکیده

Potential clinical applications of neurons derived from human induced pluripotent stem cells (hiPSC-neurons) for drug screening and transplantation therapies have received considerable attention. However, it remains unclear whether and how transplanted hiPSC-neurons are incorporated into pre-existing neural circuits. Here we developed a co-culture system of hiPSC-neurons and mouse hippocampal slices to examine the differentiation of hiPSC-neurons in pre-existing neural circuits. hiPSC-neurons transplanted in mouse hippocampal slices expressed the hippocampal neuron-specific markers HuB and Prox1 after 7 days of culture, while those markers were scarcely expressed in hiPSC-neurons cultured on glass dishes. Furthermore, hiPSC-neurons transplanted in the dentate gyrus (DG) of slice cultures grew to exhibit dentate granule cell-like morphologies, including besom-shaped dendrites. Similarly, hiPSC-neurons transplanted in the CA1 region of slice cultures grew to exhibit CA1 pyramidal cell-like morphologies, including primary apical and multiple basal dendrites with synaptic spines. Additionally, these cells projected axons toward the entorhinal cortex (EC) as observed in vivo. These data suggest that hiPSC-neurons were anatomically integrated into pre-existing neural circuits in a region-specific manner. Thus, the co-culture system will be useful for the study of efficient strategies to differentiate transplanted hiPSC-neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro

Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines ag...

متن کامل

An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells

Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs), via a neural progenitor cell (NPC) intermediate. We evaluated this protocol across 42 NPC lines (derived ...

متن کامل

Modeling Hippocampal Neurogenesis Using Human Pluripotent Stem Cells

The availability of human pluripotent stem cells (hPSCs) offers the opportunity to generate lineage-specific cells to investigate mechanisms of human diseases specific to brain regions. Here, we report a differentiation paradigm for hPSCs that enriches for hippocampal dentate gyrus (DG) granule neurons. This differentiation paradigm recapitulates the expression patterns of key developmental gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017